
Offboard MPC for Environment-aware Payload
Delivery Drone

Aneesh Sinha, Balaji Praneeth Boga, Devansh Dhrafani, Vedang Kokil, Vedant Gite, Mark Bedillion
Department of Mechanical Engineering

Carnegie Mellon University
{aneeshsi, bboga, ddhrafan, vkokil, vgite, capn}@andrew.cmu.edu

Abstract—This work introduces an Offboard Non-linear Model
Predictive Control (NMPC) framework implemented on the
Crazyflie 2.1 hardware, with a comparative analysis against
a baseline Proportional-Integral-Derivative (PID) controller for
quantitative and qualitative assessment. The ACADOS solver
is utilized for efficient C code generation, enabling the NMPC
controller to operate at a frequency of 66.67Hz on the offboard
base station.

In the evaluation of performance metrics, a detailed analysis
is conducted to discern the distinct capabilities of NMPC and
PID controllers. Additionally, an exploration is undertaken to
understand the influence of payload weight on the miniature
quadcopter’s performance. The findings reveal the NMPC con-
troller’s superior trajectory tracking abilities compared to its
PID counterpart.

I. PROBLEM DESCRIPTION

A. Background

Unmanned aerial vehicles (UAVs) have revolutionized vari-
ous industries, showcasing their potential in logistics, emer-
gency services, and more. As drones become integral to
modern applications, the need for advanced capabilities in
dynamic environments has become increasingly evident.

B. Problem Statement

Unmanned aerial vehicles (UAVs) have gained significant
traction in various applications, particularly in the realm of
package delivery. However, the existing challenges associated
with dynamic environments, obstacles, and payload weight
necessitate the development of a sophisticated drone delivery
system. The objective of this project is to design and imple-
ment an advanced drone delivery system that can intelligently
plan around obstacles to reach its destination while considering
the impact of payload weight on performance. The system
will be developed using a Nonlinear Model Predictive Control
(NMPC) framework as the primary control architecture, and its
performance will be compared with a baseline Proportional-
Integral-Derivative (PID) control strategy.

C. Objectives

The objectives for the project are listed below: (1) Baseline
PID Comparison: Develop a baseline Proportional-Integral-
Derivative (PID) control strategy for drone delivery and com-
pare its performance against the NMPC framework. Also, as-
sess the strengths and limitations of both control architectures
in terms of path tracking, stability, and responsiveness. (2)

Fig. 1. Crazyflie drone aggressively tracking figure of 8 trajectory using
NMPC framework

Intelligent Path Planning: Implement obstacle detection and
avoidance mechanisms to ensure safe and efficient navigation.
(3) NMPC Control Architecture: Utilize the Nonlinear Model
Predictive Control (NMPC) framework as the primary control
architecture for the drone delivery system. (4) Payload Weight
Consideration: Investigate the impact of payload weight on the
performance of both the NMPC and PID control strategies.
Optimize the control algorithms to adapt to varying payload
weights and ensure consistent and reliable deliveries.

D. Challenges

The challenges for the project are listed below: (1) Envi-
ronmental Adaptability: Traditional drones struggle to navi-
gate smoothly through environmental conditions, impacting
overall adaptability and performance. Addressing this chal-
lenge involves developing planning and control mechanisms
to enhance the drone’s ability to handle varying environmental
conditions effectively. (2) Precision and Stability: Previous
instances of payload delivery have been marred by difficulties
in achieving the required precision and stability during crucial
phases, leading to sub-optimal outcomes. (3) Communica-
tion Delays through Crazyflie Radio: Develop solutions to
challenges associated with communication delays through the
Crazyflie radio, a crucial aspect of real-time control. (4)
Inaccurate state estimates: Solve challenges related to the
inaccurate results from Flowdeck measurements and try to
mitigate these issues by finding reliable global/relative state

mailto:aneeshsi@andrew.cmu.edu
mailto:bboga@andrew.cmu.edu
mailto:ddhrafan@andrew.cmu.edu
mailto:vkokil@andrew.cmu.edu
mailto:vgite@andrew.cmu.edu
mailto:capn@andrew.cmu.edu

estimate. (5) Payload Design: Tackle challenges in designing
a payload related to weight and ergonomic design.

II. RELATED LITERATURE

We first conduct a literature review to identify existing
approaches for doing Model Predictive Control (MPC) on
quadrotors. The goal of this literature review was to identify
existing approaches, and challenges involved with the same.
The MPC optimization objective can be solved either onboard
using the quadrotor’s embedded platform or offboard on a
much powerful base station computer. The choice of where
to run the solver for MPC has major consequences on the
system architecture and performance.

A. Onboard MPC

If the MPC controller is run onboard, it is limited by the
computational power of the quad rotor’s embedded platform.
Most modern quad rotor platforms [1] are designed with
powerful GPU’s for running large neural network models
but feature slower CPU’s. These embedded platforms are
constrained by size and weight to be able to fit on a mo-
bile platform like quad rotors, which have severe payload
restrictions. Due to this, the CPU processing speed is limited.
For example, the Jetson Nano, a popular choice of embedded
computers for quad rotors, has a 1.43GHz 4-core Cortex-A57
CPU. This is much slower than modern computers which
typically have CPU’s with a processing speed of 2.5 GHz
and 8 or more cores. Our target platform, the Crazyflie 2.1
[2], has a Cortex-M4 CPU with a max clock frequency of
168MHz. This severely limits the speed at which we can solve
the optimal control problem for MPC.

Most modern works [3], [4] run the MPC controller on-
board. Falanga et al [3] uses the ACADOS [5] with qpOASES
[6] solver to compute trajectories at a frequency of 100Hz,
with a time horizon of 2s and a discretization step of 0.1s.
The solver is run on a Qualcomm Snapdragon Flight board
with a quad-core ARM processor at upto 2.26 GHz and 2GB
of RAM. They chose the ACADOS solver because of two
main reasons: (1) ACADOS is capable of handling single and
multiple shooting and integration for any transcribed system
dynamics. (2) It generates fast C code which can be com-
piled on the target embedded platform and uses all available
accelerators and optimizations tailored for that platform.

Alavilli et al TinyMPC [4] uses the alternating direction
method of multipliers (ADMM) algorithm which leverages the
structure of the MPC problem by precomputing and caching
while avoiding divisions and matrix inversions online. This
approach facilitates rapid computation and has a small mem-
ory footprint, enabling deployment onto resource-constrained
MCUs. TinyMPC was tested on the Bitcraze Crazyflie 2.1
platform [2] and ran the MPC controller with linearized
dynamics at 500Hz on the onboard Craziflie MCU.

B. Off-board MPC

Off-board MPC techniques are not limited by the compu-
tational capacity of like the embedded platforms as they can

run on modern hardware like the latest desktop CPU’s. This
enables the MPC controller to run as fast as the limits of
modern CPU’s. But off-board control methods suffer from
communications delay. To run any feedback based controller
like MPC, a full state estimate must be provided. For an
off-board control case, state information like position and
attitude must supplied either via an onboard state estimator
or from a motion capture system. This introduces an inherent
communication delay corresponding to the latency of the
communication channel like a radio or WiFi. The off-board
MPC controller must account for this delay to enable efficient
control.

Carlos et al An Efficient Real-Time NPMC for Quadrotor
Position Control under Communication Time-Delay [7] uses
an off board control architecture to address limited onboard
computational resources and utilizes acados package for solv-
ing optimal control problem. The solution was demonstrated
on the Crazyflie 2.1 nano-quadrotor and implemented a real-
time iteration SQP scheme, while employing HPIPM and
BLASFEO for efficient solution times.

III. SYSTEM MODELING

One of our objectives is to optimize the payload delivery
time, making it efficient and fast. Given that most quadrotors
have limited flight times which are further shortened due to
additional payload weight, we want the quadrotor to move
as fast as possible. We therefore decided go with the full
non-linear dynamics for the Crazyflie to get the maximum
performance possible. We select the state vector [s = insert
state vector equation]. Here p is the position in world coor-
dinates, q = (qw, qx, qy, qz)

T is the quaternion orientation,
vb is the body velocity, and ω is the body angular velocity.
The control input is [u = insert control input]. Here, Ω is
the individual motor angular velocity. Equation [refer MPC
objective + constraints] describes the MPC objective function
and constraints.

min
x0:N−1
u0:N−1

N−1∑
k=0

[
1

2
(xk − xref,k)

TQ(xk − xref,k) +
1

2
uT
kRuk

]
+

1

2
(xN − xref,N)TQf (xN − xref,N)

s.t x1 = xIC

xk+1 = f(xk, uk) ∀ k=1,2,...N-1
umin ≤ uk ≤ umax ∀ k=1,2,...N-1

(1)

We use the full non-linear dynamics as described in 2.
Here, S is the quaternion rotation matrix from body to
world frame.

⊗
is the quaternion multiplication. m is the

mass of the Crazyflie, Fb is the collective body force. J =
diag(Jxx, Jyy, Jzz) is the moment of inertia matrix, and Mb

is the moments applied to the COM of the quadrotor. Finally,
1z = (0, 0, 1)T .

ẋ = f(x, u) =


Svb

1
2q

⊗
ω

1
mFb − ST g1z − ω × vb
J−1(Mb − ω × Jω)

 (2)

IV. CONTROLLER DESIGN

The primary objective of the project is to conduct a com-
parative analysis between a baseline control strategy and an
optimal control strategy. The open-source hardware of the
Crazyflie is equipped with default controllers that rely on
PID. Consequently, the selection of the baseline controller
was determined to be PID. The advanced controller chosen
for comparison is MPC. The decision to opt for MPC as
the advanced controller stems from its proven efficacy in
addressing complex control challenges, offering enhanced
adaptability, and providing a robust framework for optimizing
system performance in dynamic environments. This choice
is driven by the need to assess the potential advantages and
limitations of MPC in contrast to the well-established PID
controller, thereby contributing valuable insights to the field
of control systems engineering.

A. Crazyflie Control Architecture

To comprehend the PID control architecture, it is essential
to first present an overview of the inherent control structure
of the Crazyflie.

The default configuration in the Crazyflie firmware employs
the Proportional Integral Derivative (PID) control system for
managing all desired state parameters. In this setup, the
High Level Commander (HLC) or position module transmits
desired position set-points to the PID position controller.
Consequently, these set-points yield desired pitch and roll
angles, which are then directly forwarded to the attitude PID
controller. The latter determines the desired angle rates, subse-
quently communicated to the angle rate controller, constituting
a cascaded PID controller structure. The output of this process
comprises the desired thrusts for roll, pitch, yaw, and height,
which are effectively managed by the power distribution
system controlling the motors. There are different levels of
controls in crazyflie cascaded over four levels (1) Attitude rate
(2) Attitude absolute (3) Velocity (4) Position

B. PID Control Architecture

A PID (Proportional-Integral-Derivative) [8] controller is
a feedback loop mechanism used in engineering for system
regulation. It adjusts inputs based on the difference between
desired and actual states. Comprising proportional, integral,
and derivative terms, PID controllers provide stability, reduce
oscillations, and effectively respond to dynamic changes in
various applications, ensuring precise control. The control gain
for a PID controller can be adjusted with three tunable param-
eters. Kp (proportional gain) influences the system’s response
to the current error, with higher values intensifying corrective
actions, Ki (integral gain) addresses accumulated errors over
time, crucial for eliminating steady-state discrepancies, and
Kd (derivative gain) anticipates future errors by considering

Fig. 2. Simulation framework for MPC development

the rate of error change, aiding in dampening oscillations and
enhancing system responsiveness.

The custom PID control architecture builds upon the capa-
bilities of the built in controller. The reason to develop a cus-
tom PID control loop was to develop a baseline controller and
have more control over the tuning parameters. The hardware
implementation of this architecture is defined in subsequent
sections.

C. MPC Control Architecture

MPC (Model Predictive Control) is an advanced control
method used in dynamic systems. It predicts future system
behavior through a dynamic model, optimizing control inputs
iteratively. This approach, considering constraints and perfor-
mance criteria, enables MPC to achieve precise control in
real-time, making it valuable for applications like robotics and
process control. For the scope of this project, we decided an
NMPC (Non-Linear MPC) control strategy which is an exten-
sion of MPC with the ability to handle non-linear dynamics
which is the case in this project. As described in Section
III, we use the full non-linear dynamics to enable maximum
aggression. In the subsequent sections, we talk about how the
controller is implemented on the base station.

V. SIMULATION

For the simulation environment, we use a gazebo simulation
based on the RotorS simulator [3]. The obstacles are encoded
as rigid body cylinders in the environment. Fig 2 shows the
MPC running in simulation on the RotorS framework. Please
note that physical properties like the mass and moment of
inertia of the quadrotor are configured to be the same as the
RotorS quadrotor URDF.

VI. IMPLEMENTATION AND TESTING

The implementation section of this report essentially deals
with the discussion of four major sections. We discuss the soft-

ware architecture, hardware architecture, payload fabrication,
trajectory generation and finally controller implementation. It
also intends to detail the changes made to the existing crazyflie
firmware and the iterative changes made to the payload design
in order to develop a viable payload. Here we also intend to
discuss the tests we conducted in order to validate our design
and implementations.

A. Software Architecture

The primary software architecture for this system is ROS.
We wanted to ensure that there is a significantly less delay
while ensuring steady communication with the drone over the
crazyradio. ROS (Robot Operating System) [9] is an open
source software development kit for robotics applications.

ROS offers a standard software platform to developers
across industries that will carry them from research and
prototyping all the way through to deployment and production.
Hence choosing ROS was an important mode of software
communication architecture in this project.

The software architecture consists of four main ROS nodes
which essentially communicate with each other in order to
establish a routine which can be thoroughly repeated to
conduct easier tests and ensure least communication delays.

The four main nodes of communication are as follows: (A)
Master Node, (B) Controller Node, (C) Visualization Node,
(D) Planning Node. They have been explored in detail below.

1) Master Node: This node takes care of the entire mission
propagation and execution. Essentially the function of
the primary node is to take as input the current drone’s
pose by subscribing to the mocap-external-position topic
and feed this pose to all the other nodes. Along with that
providing valuable information such as mission progress
is also an important feature of this node.

2) Controller Node: The primary task of this node is to
take as an input the poses obtained from the primary
node and also the controller interface we are trying
to run. This node takes care of providing the actual
control outputs to the crazyflie firmware based on the
control inputs and poses (states) provided to it. A detail
implementation of the control architecture is provided
below in the controller implementation subsection.

3) Visualization Node: This node takes in the poses
from primary node and processes appropriate visu-
alization features on these poses. Features like ROS
markers (cylinders and lines) are used in corelation
with appropriate publishing ROS-message types such as
navmsgs/Path() in order generate an Rviz visualization
wherein we can view and visually understand trajectory
deviation as well as reference trajectory (trajectory.txt)
from planning node along with obstacles from mocap in
the virtual environment.

4) Planning Node: This node obtains environmental data
from motion capture and generates an environment map.
Subsequently, the planner utilizes this information to
craft a path to goal. However, since the generated plan
may not be scaled to smaller timestamps, a more detailed

Fig. 3. Software Architecture Block Diagram

trajectory is generated to better align with smaller time
intervals.

The software architecture block diagram is depicted in
Figure 3

B. Hardware Architecture

The hardware architecture section deals with employing
multiple hardware components such as sensors and payload
in order to understand and deploy the mission requirements.
The primary sensors we used to deploy multiple forms of the
control architecture such as PID and NMPC along with the
Mocap Marker fabrication details are as follows: (1) Flow
Deck and Multiranger (2) Optitrack Mocap System (3) 3D
Printed Mocap Marker Panels

1) Flow Deck and Multiranger: The initial phases of the
project focused on experimenting with multiple sensor
configurations and developing our controllers based on
these sensor readings. The most convenient sensor which
is also standardized by bitcraze for relative positioning
is the FlowDeck sensor. The Flowdeck sensor outputs
crazyflie’s height and its position i.e. (X, Y) coordinates
in relative positioning system. This implies that the zero
position of the crazyflie is where it is started. Bitcraze
also provides a deck/sensor attachment which can be
affixed on top of the crazyflie in order to receive laser-
range data. Essentially there are four laser beam sensors
which deflect off of obstacles and hence, the crazyflie
can detect obstacles up to an accuracy of 5 meters. Both
sensors are shown in Figure 4
The plan initially entailed focusing on the usage of these
sensors to develop both the controllers. It was soon
observed that Flowdeck positioning data was unreliable
for surfaces which do not have good features. Also,
a regular drift was observed in crazyflie’s positioning
which often led to inaccurate state estimates and made
the crazyflie converge at a location which was +-10 cms
in both the coordinate directions (X and Y).
Hence, we decided to take an important decision about
switching to Mocap positioning system and use the
same for both, the PID and NMPC deployment. Since

Fig. 4. Multiranger Sensor (Left) Flowdeck Sensor (Right)

Mocap provides accurate global positioning estimates, it
would be highly useful as an accurate measure of input
state estimate. It was also observed that Mocap’s state
estimates were extremely reliable and hence useful for
deploying the NMPC controller.

2) Optitrack Mocap System: Motion capture (mocap) [10]
is the process of recording the movement of objects
or people. It involves measuring the position as well
as orientation of the objects or people in physical
space. The technology was originally developed for gait
analysis in the life science market but is now used in
a wide variety of other fields. The Optitrack Mocap
system is widely used because of ultra precise pose
generation with low latency and 6 DOF (Degree of
Freedom) tracking for drones, ground and industrial
robotics. The process simply captures the position of
the object by creating a rigid body using three or more
infrared reflective markers and hence tracks this rigid
body across three dimensional space.

3) 3D printed Mocap Marker Panels: The 3D printed Mo-
cap marker panel was designed and constructed while
keeping certain design considerations in check. It was
important to distribute the weight of this Mocap marker
panel along the body of the crazyflie. Hence we decided
to create a structure wherein we can distribute the weight
along the entire chassis of crazyflie and hence distribute
the effective load along all the motors. The Mocap
marker panel (green color) is shown in Figure 5

C. Payload fabrication

Initially the design of the payload focused upon a critical
consideration of utilizing flowdeck sensor. Since the flowdeck
sensor is equipped with a camera that uses optiflow state
estimation capturing frames of ground moved with respect to
the drone, it is extremely important to ensure that there is no
obstruction to the view of the crazyflie. With this in mind,
an initial version of the payload was built which weighed
two grams in terms of gross total weight. The first payload
is depicted in Figure 6.

After switching to Mocap, we were not constrained with the
payload design consideration. Since Mocap does not need to
account for spatial features of the ground, the payload could

Fig. 5. Mocap Marker Panel (Green, PLA-20-percent Infill)

Fig. 6. 3D printed payload (1) - PLA - 20-percent Infill

be designed with no absolute constraints. The image shown
in Figure 7. depicts the final iteration of the payload which
overcomes certain important flaws of the previous payload.
There is also a functionality to change the payload weight
dynamically with the addition and removal of screws/nuts
in the holes. Now the payload weight can be varied from
a minimum gross weight of 3 grams and a maximum gross
weight of 6 grams.

The entire payload and drone assembly is shown in Figure
8.

Fig. 7. 3D printed payload (2) - PLA - 20-percent Infill

Fig. 8. Full assembly depicted in the image

D. Trajectory Generation

This can be categorized into two subsections as shown
below:

1) Fixed Trajectories (No Obstacle Avoidance):
a) Helical Trajectory: A helical path was chosen to sim-

ulate a continuous and smooth movement in three-dimensional
space. The helical trajectory was generated using Python,
taking into account key parameters such as radius (r=0.5m),
initial height (h=0.6m), height increments per time step
(∆h=0.002m), total duration (Tf =20s), and a sampling time
(Ts=0.015s). The resulting trajectory showcases a graceful
ascent from the origin to a specified height, followed by a
continuous helical pattern.

b) Figure 8: In addition to the helical trajectory, a figure
”8” pattern was designed to introduce complexity to the
robotic system’s motion. The trajectory was implemented by
using the parametric equations x = r.cos(t), y = r.sin(2t)
and z = h0 (h0=0.6m) This choice of parametric equations
results in sharp corners resembling the figure ”8”.

2) With Obstacle avoidance: Environmental data is ac-
quired from a motion capture system and a YAML file is
generated that functions as input for the Rapidly Exploring
Random Trees (RRT) planner [11]. Subsequently, the planner
utilizes the data provided in the YAML file to formulate a
path plan using the RRT planning algorithm. Recognizing
that the initial plan may not be adequately scaled for smaller
timestamps, an additional step is incorporated. Specifically,
the planning node undertakes the task of refining the initially
broad path plan into a more detailed trajectory, ensuring better
alignment with smaller time intervals.

E. Controller Implementation

As mentioned above, one of the goal of this project is
to generate a comparative analysis between PID and MPC
controller.

1) PID Control: To establish a baseline PID controller, our
development process began with the creation of a basic code,
leveraging functions from the built-in MotionCommander()
class. The goal of this activity was to guide the crazyflie from
point A to B. We utilized the Flowdeck for positioning. The
error for this PID controller was calculated as the simple dif-
ference between the desired position and the current position.

This error was then fed into a custom PID function designed
to minimize deviations. The PID controller’s output consisted
of velocity set points, subsequently conveyed to the Crazyflie
using its native commands. We implemented three distinct PID
controllers for each of the three axes (X, Y, Z), as we observed
that a single PID control parameter did not yield satisfactory
results across all three directions. The control architecture of
PID can be referred from fig 9

Furthermore, we incorporated obstacle avoidance logic us-
ing PID in our system. Obstacle detection was managed by
the multiranger sensor. To execute this task, we implemented
a controller switching strategy. Initially, the Crazyflie utilized
the basic control loop, as described earlier, to navigate from
point A to B. Simultaneously, the multiranger continuously
monitored for the presence of obstacles within a predefined
threshold. Upon detecting an obstacle, the code transitioned
to an alternate PID control loop, aiming to minimize the
inverse of the distance to the obstacle. This involved navigating
either right or left based on the presence of obstacles in
those directions until the multiranger signaled the absence
of obstacles. Subsequently, the code reverted to the original
control loop to resume the journey to point B.

However, as discussed previously upon executing the code,
consistent deviations were observed in the Crazyflie’s posi-
tion, rendering it unable to reach the designated locations as
intended. Further investigation and literature review revealed
that the accuracy of the flowdeck is susceptible to external
factors such as lighting conditions and floor texture. Given the
project’s requirement for precise Crazyflie positioning, crucial
for payload pickup, it became evident that relying on flowdeck
for position estimate would be insufficient. Multiple trials
substantiated the need for an alternative approach to attain the
necessary precision. To overcome this crucial issue to obtain
correct estimates, we shifted to a motion capture system as
mentioned in the above section.

In this scenario, the PID control architecture remains un-
changed, with the only modification being that the position
estimates now originate from the motion capture system in-
stead of the Flowdeck.

2) MPC control: To implement an offboard NMPC, we
utilized the system dynamics as mentioned in above section
III with the ROS architecture as mentioned in software archi-
tecture section. ACADOS solver is used to generate fast C
code for running the optimization problem on our base station
computer. The base station has a 6-core 2.6GHz Intel i7 CPU
and 8GB RAM. In 10 The OptiTrack motion capture system
publishes the mocap observations at 200Hz via the local area
network (LAN). The IMU readings from the Crazyflie are
streamed from the Crazyradio at 100Hz. We then fuse the
state estimates using a Kalman state estimator and publish
the full state at 66.67Hz. This is fed to the non-linear MPC
controller which publishes the control trajectory for the N=50
horizon. Finally, we convert the motor velocity control inputs
from the MPC to roll, pitch, yaw-rate and thrust which can be
sent to the Crazyflie motion commander using send setpoint()
command. The low-level controls are handled by Crazyflie’s

Fig. 9. Image shows a block diagram of the PID framework

built in cascaded PID controller.

F. Testing

To test the trajectory tracking, 8 scenarios have been de-
signed with 4 scenarios tested on each of the MPC and PID
controllers. These 8 scenarios are listed as follows and are
self-explanatory,

• PID with Custom Trajectory and without payload
• PID with Custom Trajectory and with payload
• PID with Obstacle Avoidance and without payload
• PID with Obstacle Avoidance and with payload
• MPC with Custom Trajectory and without payload
• MPC with Custom Trajectory and with payload
• MPC with Obstacle Avoidance and without payload
• MPC with Obstacle Avoidance and with payload

VII. DEMO RESULTS

The qualitative analysis of the framework is depicted in
Figure 11 wherein the NMPC framework is tracking figure
8 reference trajectory. Here the red line depicts the reference
trajectory and the green is the tracked trajectory in real-time by
the drone. This visualization is facilitated by the visualization
node developed by us.

Similarly, the Figure 12 shows the obstacle avoidance tra-
jectory tracking performance wherein the blue columns depict
the obstacles and the red and green trajectories are reference
and tracked path.

The following metrics are used to evaluate the trajectory
tracking of the Crazyflie in the 8 scenarios tested. For calcu-
lation of the metrics, sufficient time sampling and backward
interpolation is done to make sure the reference and tracked
trajectories are of similar shape.

• Root Mean Square Error

• Maximum Absolute Deviation
1) Root Mean Square Error (RMSE):

The Root Mean Square Error calculates the square
root of the average of the squared differences between
the points on the reference trajectory and the tracked
trajectory. The Root Mean Square Error is given by the
following equations

RMSEi =

√√√√ 1

N

N∑
j=1

(iref[j] − itraj[j])2

where i ∈ {x, y, z}

2) Maximum Absolute Deviation (MAD):
The Maximum Absolute Deviation calculates the Max-
imum Absolute Deviation observed between the points
on the reference trajectory and the tracked trajectory.
The Maximum Absolute Deviation is given by the
following equations

MADi = max
j

|ireference[j] − itrajectory[j]|

where i ∈ {x, y, z}
The Crazyflie has been tested on 8 scenarios and the metrics

defined above (RMSE and MAD) are summarized in Tables
I and II. The Plots corresponding to certain scenarios are as
shown in Figures [17 - 16].

multirow
From the table and plots, it can be inferred that MPC shows

lesser error than PID with respect to Root Mean Square error
and the Maximum Deviation of the Trajectory in the three
directions i.e. X,Y and Z directions.

From the plots, it can be inferred that MPC takes lesser time
when compared to PID to track and complete the trajectories.

Fig. 10. Image shows a block diagram of the NMPC framework

Fig. 11. MPC Custom Trajectory with Payload

Fig. 12. MPC Obstacle Avoidance with Payload

Fig. 13. PID Custom Trajectory with Payload

TABLE I
OBSTACLE AVOIDANCE

Payload No payload
PID MPC PID MPC

RMSE
X 0.0468 0.0264 0.0456 0.023
Y 0.0432 0.0274 0.0667 0.0467
Z 0.0667 0.0401 0.1052 0.0734

MAD
X 0.1735 0.0685 0.1346 0.0312
Y 0.1442 0.0991 0.1542 0.1069
Z 0.3128 0.1295 0.3367 0.1357

Fig. 14. MPC Obstacle Avoidance Trajectory with Payload

Fig. 15. PID Obstacle Avoidance Trajectory without Payload

TABLE II
CUSTOM TRAJECTORY TRACKING

Payload No payload
PID MPC PID MPC

RMSE
X 0.0504 0.0456 0.0539 0.0496
Y 0.0852 0.0597 0.1067 0.0853
Z 0.09423 0.0569 0.1175 0.0823

MAD
X 0.1735 0.0702 0.1563 0.0624
Y 0.1965 0.1274 0.2067 0.1534
Z 0.3134 0.1311 0.3548 0.1474

Fig. 16. PID Obstacle Avoidance Trajectory with Payload

Fig. 17. PID Custom Trajectory with Payload

VIII. CONCLUSIONS

In conclusion, the Nonlinear Model Predictive Control
(NMPC) algorithm has demonstrated superior performance
compared to the Proportional-Integral-Derivative (PID) con-
troller in the aspects of trajectory tracking and obstacle
avoidance. The trajectory deviations observed in the MPC-
controlled drone were notably fewer than those observed in
the PID-controlled scenarios, leading to a more efficient and
faster achievement of the goal.

Moreover, both controllers have handled payloads well, with
the actual trajectory closely adhering to the reference trajectory
even under the additional load. This resilience ensures that the
drone maintains stability and accuracy in payload deliveries,
emphasizing the practical applicability of the controllers in
real-world scenarios.

In summary, the findings underscore the efficacy of MPC
in trajectory tracking and obstacle avoidance, making it a
favorable choice for applications that demand high precision
and responsiveness.

IX. ACKNOWLEDGEMENT

We would like to express sincere gratitude to the professor
Mark Bedillion and teaching assistant Khai Nguyen whose
guidance and support have been invaluable in completing this
project. We would also like to acknowledge Master’s students:
Prakrit Tyagi and Jong Hoon Park for their support in the
crucial moments of this project.

REFERENCES

[1] “Jetson Nano Developer Kit — developer.nvidia.com.” https://developer.
nvidia.com/embedded/jetson-nano-developer-kit. [Accessed 16-12-
2023].

[2] “Crazyflie 2.1 — Bitcraze — bitcraze.io.” https://www.bitcraze.io/
products/crazyflie-2-1/. [Accessed 16-12-2023].

[3] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC:
perception-aware model predictive control for quadrotors,” CoRR,
vol. abs/1804.04811, 2018.

[4] A. Alavilli, K. Nguyen, S. Schoedel, B. Plancher, and Z. Manchester,
“Tinympc: Model-predictive control on resource-constrained microcon-
trollers,” 2023.

[5] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados
– a modular open-source framework for fast embedded optimal control,”
Mathematical Programming Computation, Oct 2021.

[6] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpoases: A parametric active-set algorithm for quadratic programming,”
Mathematical Programming Computation, vol. 6, pp. 327–363, 2014.

[7] B. B. Carlos, T. Sartor, A. Zanelli, G. Frison, W. Burgard, M. Diehl,
and G. Oriolo, “An efficient real-time nmpc for quadrotor position
control under communication time-delay,” in 2020 16th International
Conference on Control, Automation, Robotics and Vision (ICARCV),
pp. 982–989, 2020.

[8] Y. Li, K. H. Ang, and G. Chong, “Pid control system analysis and
design,” IEEE Control Systems Magazine, vol. 26, no. 1, pp. 32–41,
2006.

[9] “ROS: Home — ros.org.” https://www.ros.org/. [Accessed 16-12-2023].
[10] J. S. Furtado, H. H. Liu, G. Lai, H. Lacheray, and J. Desouza-

Coelho, “Comparative analysis of optitrack motion capture systems,”
in Advances in Motion Sensing and Control for Robotic Applications:
Selected Papers from the Symposium on Mechatronics, Robotics, and
Control (SMRC’18)-CSME International Congress 2018, May 27-30,
2018 Toronto, Canada, pp. 15–31, Springer, 2019.

[11] S. LAVALLE, “Rapidly-exploring random trees : a new tool for path
planning,” Research Report 9811, 1998.

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.ros.org/

	Problem Description
	Background
	Problem Statement
	Objectives
	Challenges

	Related literature
	Onboard MPC
	Off-board MPC

	System modeling
	Controller Design
	Crazyflie Control Architecture
	PID Control Architecture
	MPC Control Architecture

	Simulation
	Implementation and Testing
	Software Architecture
	Hardware Architecture
	Payload fabrication
	Trajectory Generation
	Fixed Trajectories (No Obstacle Avoidance)
	With Obstacle avoidance

	Controller Implementation
	PID Control
	MPC control

	Testing

	Demo Results
	Conclusions
	Acknowledgement
	References

